Presentation by

Angela Clough

MSK Ultrasound

'Lumps & Bumps'

Connective tissue pathology and variants

June 2019

Objectives

- Review guidelines
 - NICE guidelines and ESSR guidelines
- Review scanning techniques and tips
- Discuss most common lumps & bumps

NICE Guidelines - 2015

Soft tissue Sarcoma

- Just over 3,000 new soft tissue sarcomas diagnosed each year in the UK
- A full-time GP with a list size of 2000 patients is likely to diagnose approx. 1
 person with soft tissue sarcoma during their career
- Occurs in connective tissue therefore affects many areas of the body
- Five year survival rate dependent upon the site
- Believed that patients present with a mass, that may be painless and may become large

https://www.nice.org.uk/guidance/ng12/evidence/full-guideline-pdf-74333341

Background information

- Sarcomas are a rare diverse group of cancers
- Thought to be embryonic in origin
 - Arising from connective tissue:
 - Bone, cartilage, muscle, blood vessels, nerves and fat
- Bone and soft tissue sarcomas are the 21st most common cancer type
 - Bone sarcomas 27th most common type
 - Soft tissue sarcomas (STS) 23rd most common cancer type
- Majority of soft tissue masses most likely benign
 - STS account for 1% of malignant tumours
 - STS increase in frequency with age

https://www.nice.org.uk/guidance/csg9/evidence/full-guideline-pdf-2188960813

NICE Guidelines – 2015 (Adults)

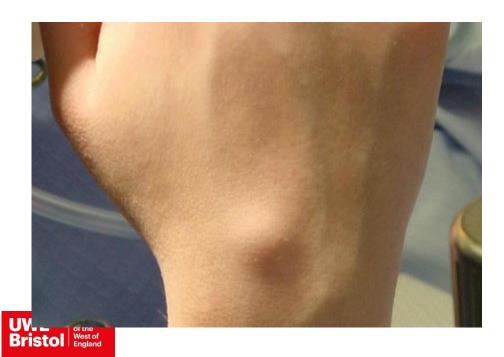
Unexplained lump/mass increasing in size

Consider ultrasound within 2 weeks

Urgent 2 week cancer pathway if US suggests sarcoma or clinical concern persists

NICE Guidelines – 2015 (Children or young people – ages 16-24)

Children or young person with unexplained mass increasing in size


Access to ultrasound within 48 hours

Very urgent (48 hrs) referral to specialist if US suggests sarcoma or uncertain findings

The Role of Ultrasound – Why US?

- Extension of the clinical examination
- Clinical ambiguity
 - U/S sinister features or
 - U/S features allowing diagnosis of common benign masses?
- Determine patient management
 - o Further imaging or biopsy?
- Patient reassurance / patient + GP vigilance

Clinical history

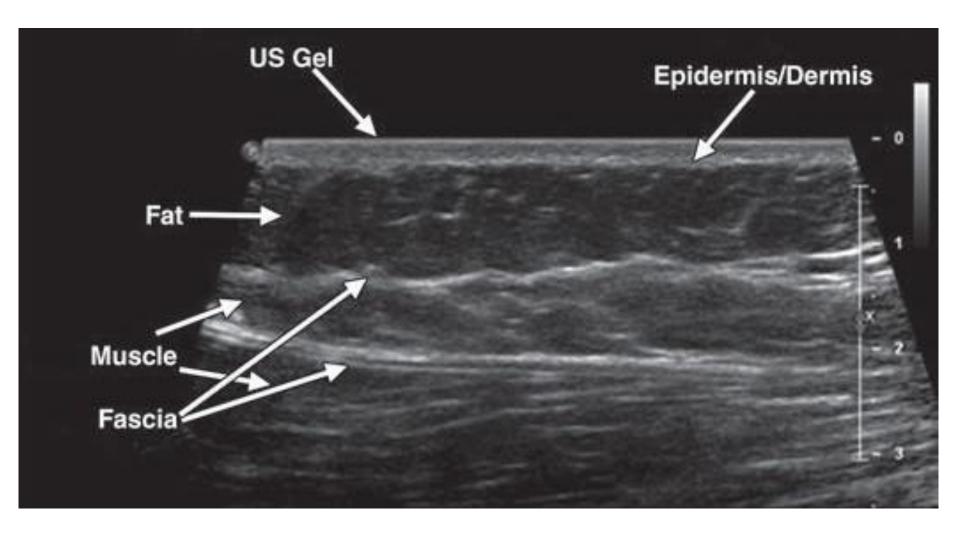
- Has there been trauma?
 - Some patients may report trauma that is unrelated and misleading
- Is the patient anticoagulated?
- Is it growing, and how fast?
- Does it change in size depending on position, exercise or muscle contraction?
- Is there a history of oncology or previous surgery?
 - o Noebauer-Humann et al, 2015. Soft tissue tumors in adults: ESSR-approved guidelines for diagnostic imaging

Clinical symptoms & palpation

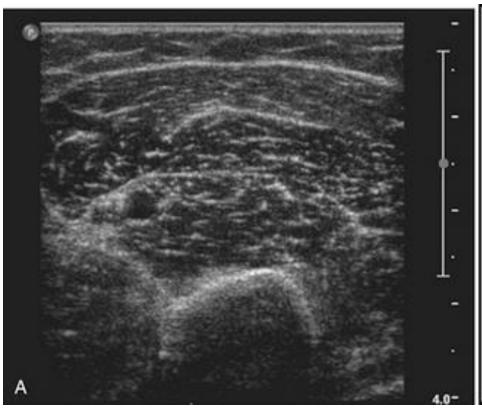
- Is the lesion painful?
- Is it palpable, and if so, is it hard, soft, fixed?
- Is it moveable against the skin and underlying tissue?
- Are there any skin alterations or pathological vessels?
- Does it discharge?
- Single or multiple lesions?
- Noebauer Humann et al, 2015. Soft tissue tumors in adults: ESSR-approved guidelines for diagnostic maging

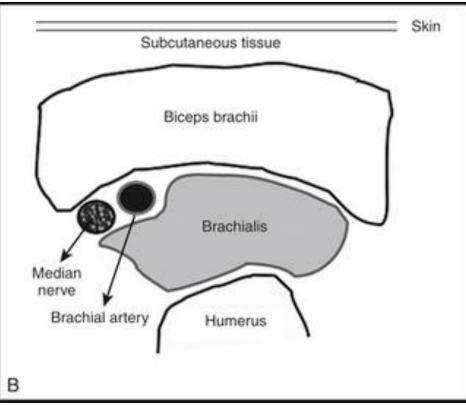
Approach

PRESTO


- PR presentation how long?, pain?, related issues?
- E elasticity is the lump soft & mobile
- S shape outline, definition (well-defined or not) and size
- T tissues involved position and relation to other structures
- O other is there calcification? Content?
 Vascularity?

What should be described on ultrasound?


- Relation to the fascia, e.g. superficial or deep
- Relation to/infiltration of vessels/nerves and if possible bones and joints and other crucial adjacent structures
- Size (in three dimensions)
- Morphology:
 - Cystic, solid
 - Vascularity
 - Presence or absence of necrosis
 - Bleeding
 - Posterior acoustic shadowing/enhancement
 - Calcifications
 - Shape
 - Borders/margins
 - Noebauer-Humann et al, 2015. Soft tissue tumors in adults: ESSR-approved guidelines for diagnostic imaging


Anatomy

Anatomy

Features

Size and Shape

- Size alone is not a discriminating factor, however 5 % benign masses
 5 cm
- Sarcomas grow in a centripetal fashion therefore usually round or ovoid
- Size and shape should always be documented

Location

- Subcutaneous, intramuscular, intermuscular, blood vessels, joints or tendons
- Masses that cross more than one compartment are usually malignant or inflammatory
- However! STS can be confined to one compartment in early stages!!!

Features

Margin

- Benign & malignant masses both typically have smooth welldefined borders
- STS compress rather than infiltrate adjacent soft-tissue structures creating a fibrous pseudo capsule
 - There may be a rim of echopoor peri-lesional oedema around malignant masses
- Aggressive or deep fibromatoses often have irregular or speculated borders

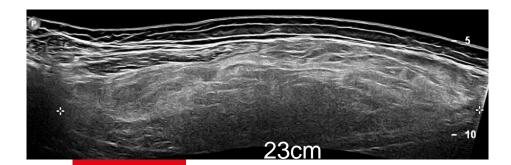
Echo pattern

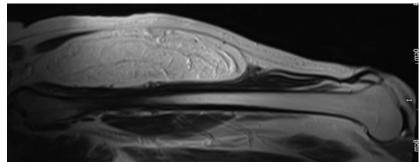
- Varied appearances occur in both benign and malignant masses
- Heterogeneity can occur due to haemorrhage or necrosis (most often seen in STS)

Features of soft tissue masses

Calcification

- Varied degree of mineralisation can be present: punctate foci to complete ossification
- Both benign and malignant masses may calcify or ossify


Compressibility


- Sonopalpation may distinguish cystic from solid (+M mode)
- Assess for debris e.g. abscess
- Not all cystic lesions are compressible e.g. ganglions
- Lipomas are usually compressible
- Elastography emerging technology

Features - Vascularity

- All masses should be assessed with colour or power Doppler
- Occasionally characteristic vascular patterns can be seen
- There is overlap between benign and malignant tumours
 - Benign schwannomas are often highly vascular
 - Malignant liposarcomas can be relatively avascular

MRI & diagnosis

- Ultrasound first line of investigation
- MRI and US are complimentary methods of imaging
- MRI reserved for deeper larger soft tissue masses
- MRI also best when US features are indeterminate or non-specific
- MRI reserved for surgical planning
- Biopsy or excision biopsy

Various types of lumps & bumps

- Lipomas
- Cysts & bursae
- Fibrous tumours
- Pseudo-masses
- Muscle masses
- Inflammatory in origin
- Vascular masses
- Nerve tumours
- Synovial tumours
- Arthritic lesions

Lipomas

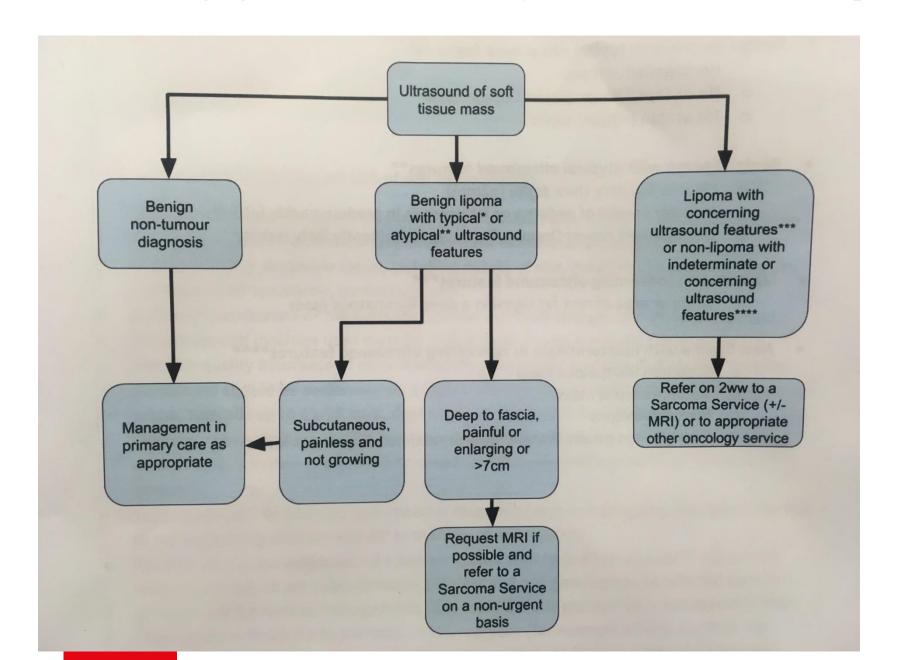
- Soft, fatty lumps that grow under the skin
 - Overgrowth of fat cells
- 1 in 100 people develop lipomas
- Occur anywhere in the body where there are fat cells:
 - Shoulders
 - Neck
 - Torso
 - Back
 - Buttocks
 - Thigh
- Should feel soft and "doughy" to touch
- Usually solitary but can be multiple in 5-15% cases
 - Rare inherited condition called familial multiple lipomatosis
 - http://www.nhs.uk/conditions/lipoma/Pages/Introduction.aspx

Lipomas

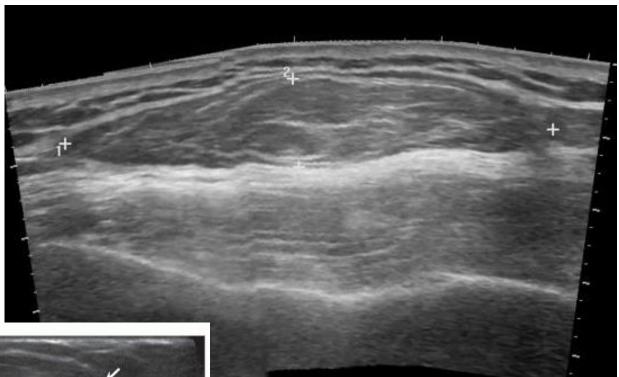
- NHS advice see your GP if the lipoma is:
 - Getting bigger
 - Is painful
 - Feels hard
 - Grows back after being removed
 - GP's may refer patients to specialist centres if the lipoma is > 5 cm or painful
 - http://www.nhs.uk/conditions/lipoma/Pages/Introduction. aspx

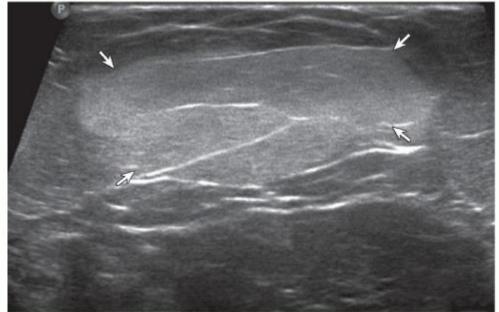
Lipomas – on ultrasound

- Ovoid or elliptical
- Avascular on colour Doppler
- Contain short echogenic linear striations running parallel to the skin
- Variable in echogenicity
 - Hyperechoic, hypoechoic or isoechoic
- 80% are < 5 cm in size
- Majority located in the subcutaneous fatty tissue
- Can be intermuscular or intramuscular
 - Deeper lipomas are less common
 - Differentiation from sarcoma can be difficult
 - Recommend MRI for deeper lipomas


Features that suggest malignancy - liposarcoma

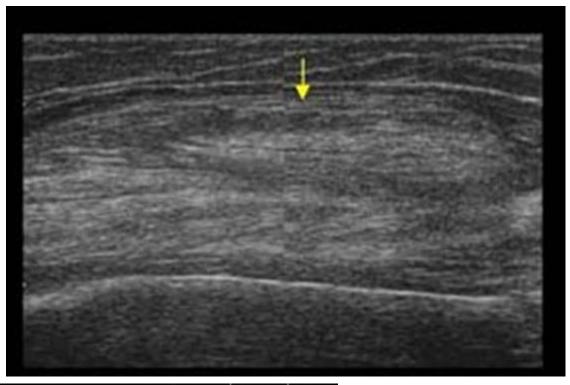
- Patient age > 60yrs
- More common in males
- Large size > 10 cm
- Presence of thick septa > 2 mm
- Presence of nodular/globular non-adipose mass-like areas
- Decreased percentage of fat composition (<75%)

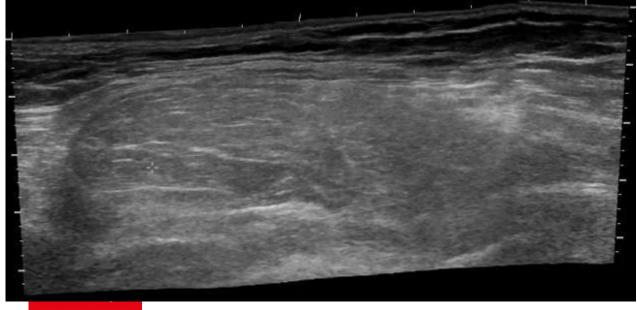

 Paunipagar et al, 2010. Ultrasound features of deep-seated lipomas. Insights Imaging. 1: pp 149-153



Guide for U/S Imaging of Trunk and Extremity Tumours (Southmead Hospital)

Lipoma

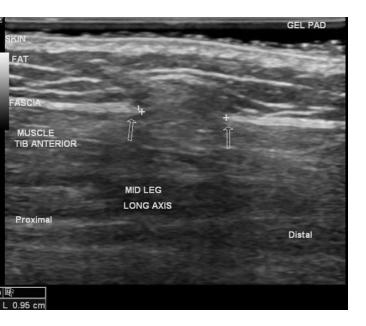




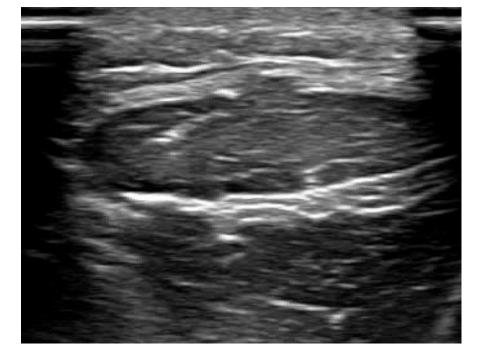
Deep lipomas

Deep lipomas can appear isoechoic to the muscle tissue. Can infiltrate the whole muscle belly.

MRI better defines the borders and relationships to neurovascular structures



Pseudo-masses


- Muscle
 - Accessory muscles assess for asymmetry on contralateral side
 - Muscle hernias
- Normal but prominent subcutaneous fat that is asymmetrical "Lipohypertrophy"
 - Usually after significant weight loss or gain
- Underlying bone or cartilage
 - Typically rib cage area
- Patient reassurance!

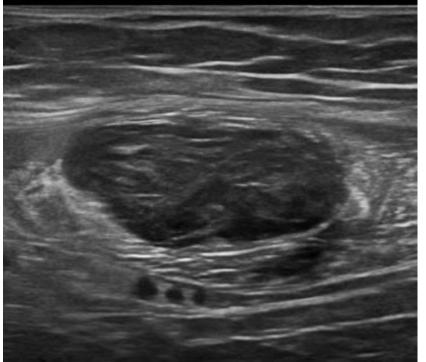
Muscle hernia

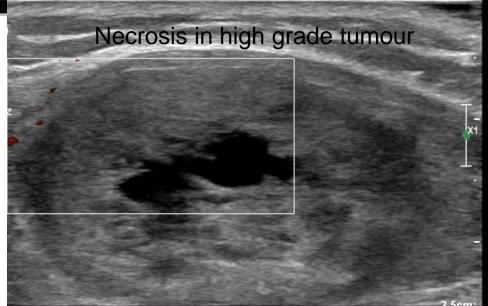
Joint hernia

Muscle masses - Haematoma

Muscle haematomas

- History of trauma/injury
- Overstretching or contusion
- Spontaneous haematomas in the absence of anticoagulation or injury should raise suspicion of intra-tumoural haematomas within a sarcoma that mimic the haematoma
 - Protocol should recommend follow-up scan 8-10 weeks or MRI


 (An interesting article by Hoshi *et al* (2017) Clinical features of soft tissue sarcoma presenting intra-tumour haematoma: case series and review literature. *International Orthopaedics*. 41: 203-209)

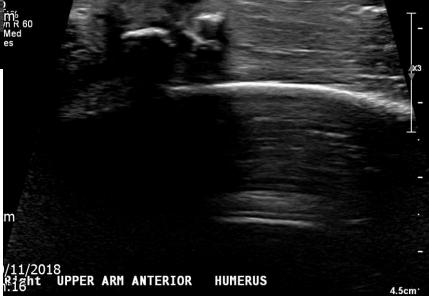

Ultrasound appearances:

- Variable according to age of haematoma
- Initially poorly defined margins and generally hyperechoic
- After 1-2 days becomes hypoechoic
- Matures and becomes heterogeneous but shrinks
- Can liquefy and have cystic components
- Usually avascular
- Can persist indefinitely and remains as a serous cyst like structure

Haematoma

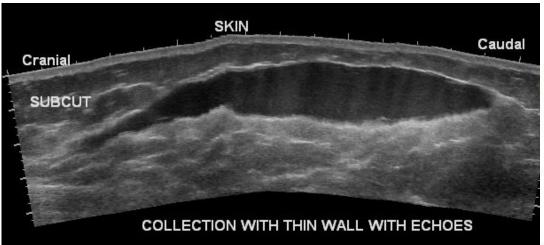
Muscle trauma

Complications of muscle injury

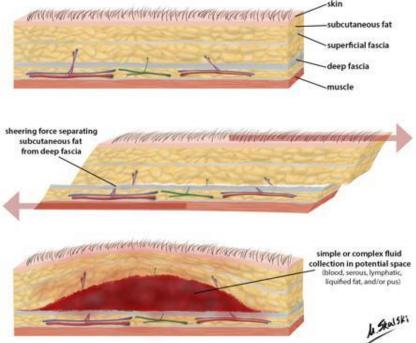

Myositis ossificans (MO)–

- Myositis ossificans traumatica related to muscle trauma or re-injury of muscle injury
- 50% of cases have been reported with no history of trauma
- Heterotopic non-neoplastic bone or cartilage formation in or adjacent to muscle
- May be painful (although asymptomatic cases have been reported)
- 1 to 2 weeks after trauma there is degeneration and necrosis of the muscle tissue
- 3 to 4 weeks later mesenchymal cell proliferation and bone formation occurs (mature myositis ossificans)
- <u>Differential diagnoses</u>:
- Myositis ossificans progressiva inherited condition with progressive extra skeletal ossification
- Neurogenic heterotopic ossification where paralysis has been implicated

Complications of muscle injury – Myositis ossificans


Ultrasound features of MOT

- Ultrasound features can be non-specific
 - Clinical history may be helpful
- Short term follow-up scans may be useful considering the changes that occur
- Early features of MO:
 - Homogeneous hypoechoic well-defined oval shaped mass with thickening of the surrounding muscle belly
 - Hyperechoic lamellar rim
- Late stage features:
 - More defined rim with acoustic shadowing
- Surgical excision is usually performed to avoid recurrence

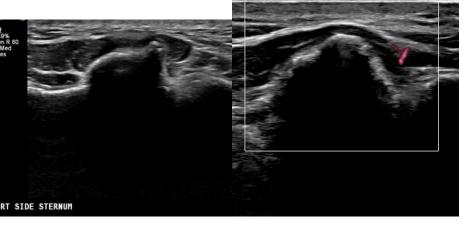


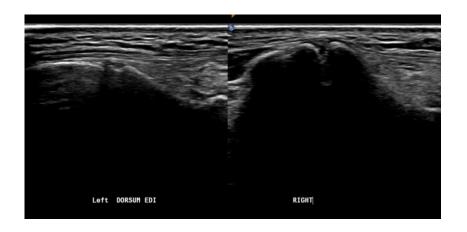
Haematomas – longstanding

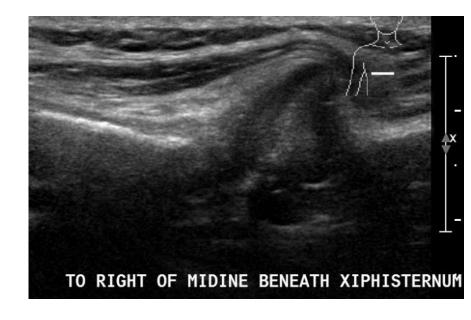
- Morel-Lavellee lesion:
 - Degloving type of injury haemorrhage between the subcutaneous fat and musculature - common site is buttocks and thigh
 - can also be present in calf

Morel-Lavallée mechanism

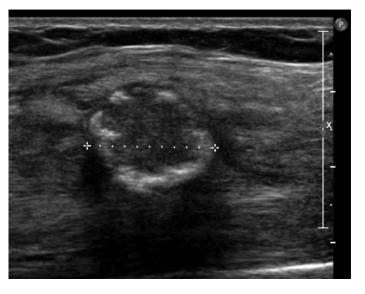
Synovial osteochondramatosis




- Proliferation and metaplastic transformation of synovium
- Nodules can detach and lie free in joint
- Knee > elbow> hip>shoulder



Skeletal/cartilaginous lumps



Soft tissue calcification

Granuloma

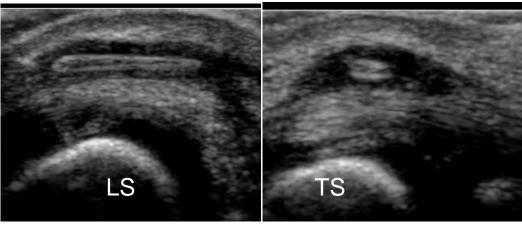
- Well defined round hypoechoic mass
- Variable rim calcification with posterior acoustic shadowing
- Commonly in subcutaneous tissue (often buttocks resulting from previous injections)

Several may coalesce →lobular appearance

Other common reasons include:

- Phleboliths within venous vascular malformation, gout or pseudogout

Less common reasons include:


- Soft tissue infection, sarcoma, soft tissue chondroma, myositis ossificans, haematoma etc.

Foreign body granuloma

- Response to foreign bodies
- May see surrounding hypoechoic area of granulation tissue
- Varied degree of vascularity

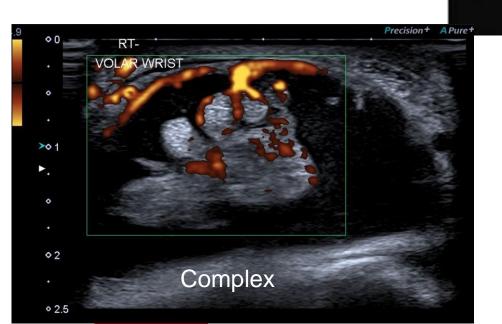
Cysts and bursae

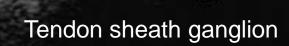
Ganglions

Baker's cysts

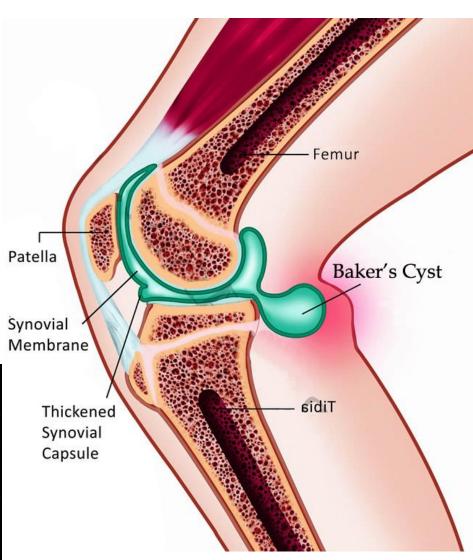
Bursitis

Epidermoid cysts


Ganglions

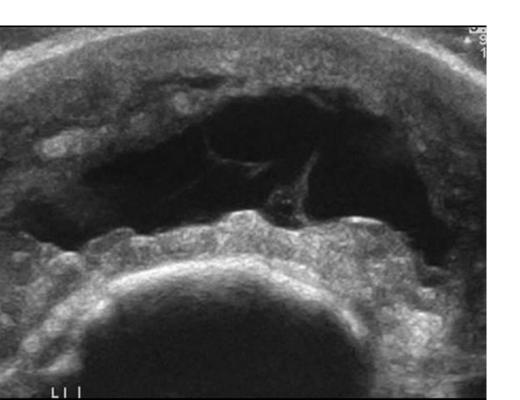

- Uncertain aetiology
 - Probably myxomatous degeneration of periarticular connective tissue
- No synovial layer
- Most commonly seen on hands/wrist and feet
 - Can occur on tendon sheath of fingers
- May be painful
- Vary in size can be round, elongated or lobulated
- Usually anechoic
 - Internal septa and wall thickening can occur in long-standing chronic ganglia
- Role of ultrasound try establish point of origin

Ganglia

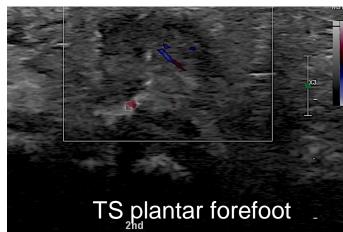

PIP

- Has a synovial layer and arises from the joint
- Arises between the medial head of gastrocnemius and semimembranosus tendon
- Related to underlying joint disorder

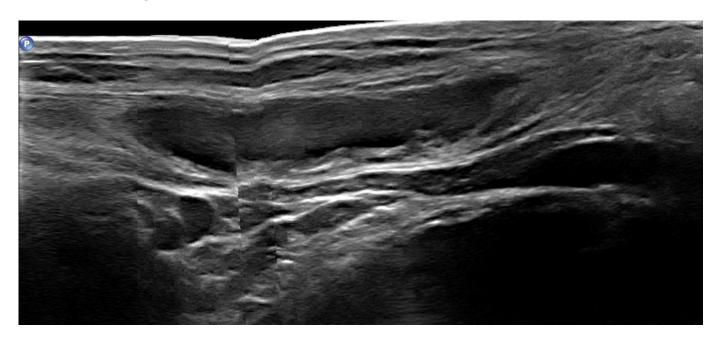
Baker's cyst


Bursitis

Synovial bursae can become enlarged if inflamed

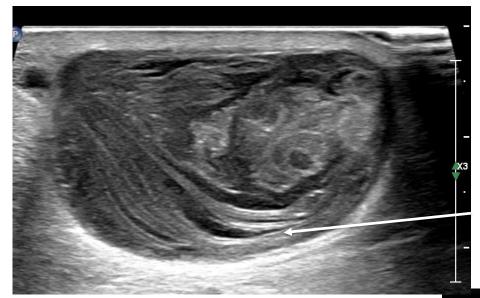

Anechoic or

echogenic if contains fibrinous exudate or crystal


deposition disorders

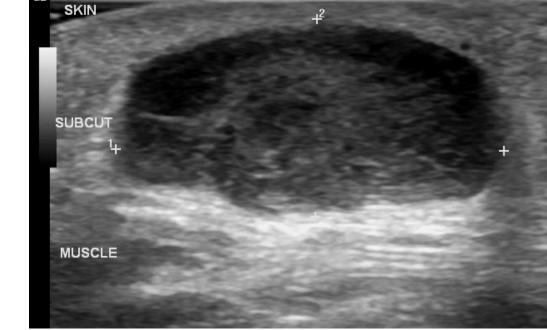


Cyst of canal of Nuck


Epidermoid cyst

(aka epidermal inclusion cyst, sebaceous cyst)

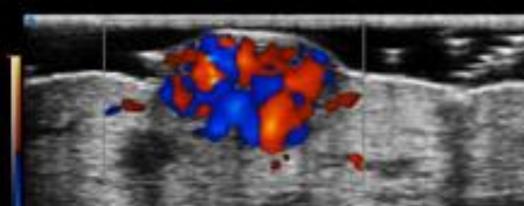
- Subdermal cystic masses
- Found on head, neck, face, trunk and back
- Usually < 5 cm in size
- U/S appearances depend on maturation + compactness
- Can be anechoic however mostly echogenic when containing keratin +/- cholesterol deposition
- Small punctum can be seen (10%) if originates from sebaceous gland
- Posterior acoustic enhancement
- No vascularity on colour Doppler (unless peri cystic inflammation)
- Hair follicle tumour in scalp = pilomatricoma



Epidermoid cyst

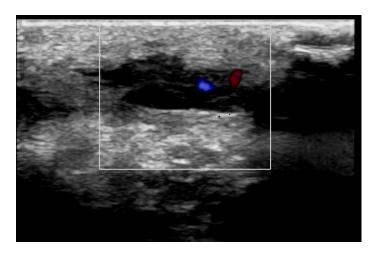
Keratin aggregates +/- cholesterol deposition

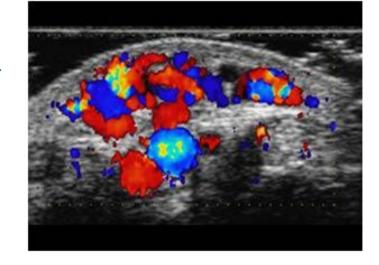


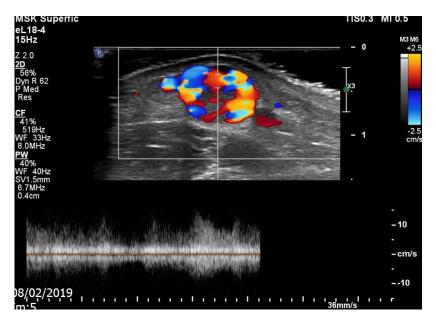

Vascular anomaly

Includes vascular tumours and vascular malformation

Haemangiomas

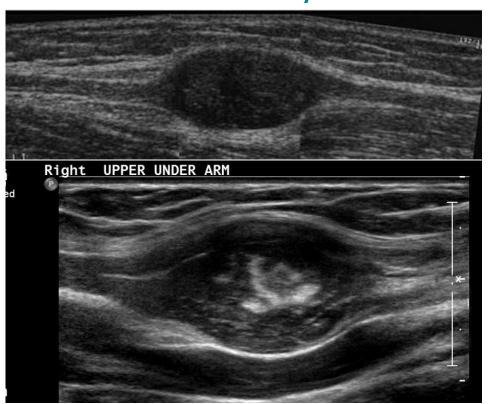

- Lesions with high fat content can be hyperechoic
- Compressible vascular spaces
- Usually have some supporting stroma
- Bluish tinge when superficial lesion
- Can be difficult to tell from vascular malformation (assess chronological behaviour)

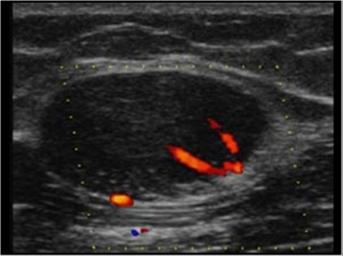

Vascular malformation


- Arteriovenous malformation
 - high flow, arterial PW
 - Venous malformation
 - High or low flow
 - Can be superficial or deep

Low flow venous malformation

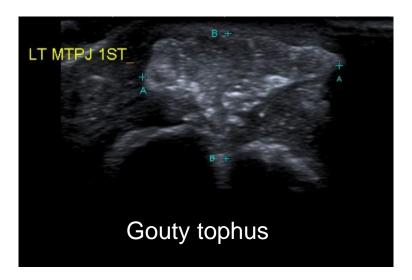
Arterial malformation

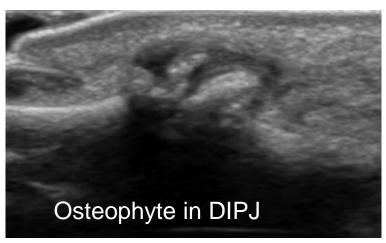

Nerve tumours


Schwannomas and neurofibromas

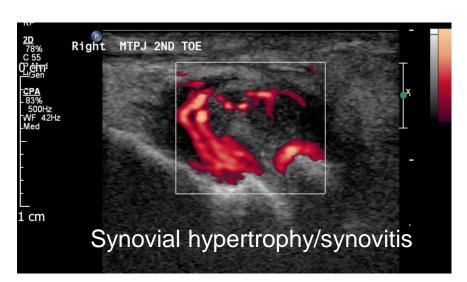
- Clinically the patient has positive Tinel sign = pain or paraesthesia along nerve area
- Centric or Eccentric to the nerve axis
- Nerve seen entering and existing the mass (90%)
- Fusiform or oval in shape
- Uniformly hypoechoic mass with moderate vascularity on colour Doppler
 - Cystic degeneration & calcification can be seen longstanding schwannomas (ancient schwannomas)

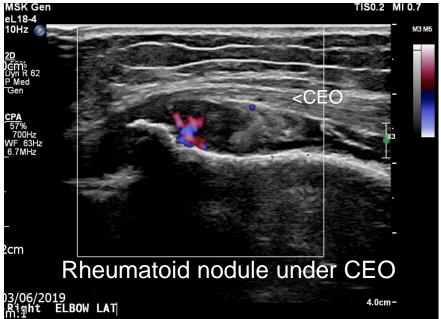
Schwannoma/Neurofibroma

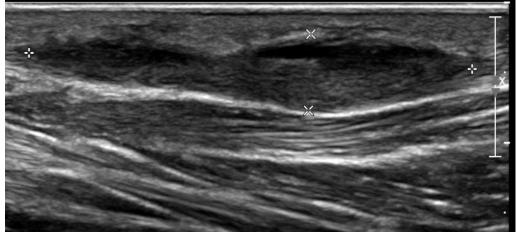



- Schwannomas more likely to be eccentric, can have cystic degeneration
- Neurofibromas can be multiple with neurofibromatosis
- More important to report on centric eccentric location of tumour to parent nerve as helps surgical planning

US diagnosis based on a number of features. These US features usually typical enough to make a diagnosis without need for biopsy

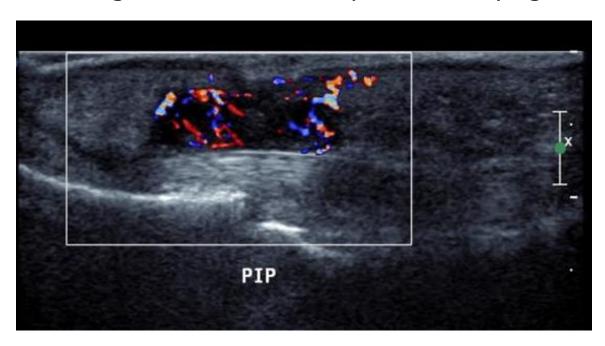


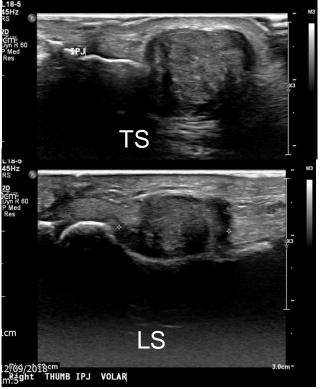

Arthritis



Fibroblastic proliferation

- ■Plantar fibromatosis
- □palmar fibromatosis (Dupuytren's contracture)
- Fibroma
- Hypoechoic fusiform shaped masses
- arising from the fascia
- Usually avascular if small
- Larger lesions > 2-3 cm can have some vascularity on colour Doppler





Synovial tumours

- Giant cell tumour of the tendon sheath (GCTTS)
 - Commonly seen in the hands and feet
 - Can mimic ganglion cysts
 - Round or ovoid mass that encircle the tendon
 - Heterogeneous with moderate internal vascularity
 - Large lesions can scallop the underlying bone

Features suggestive of malignancy

• Lump > 5 cm

- Lump/mass increasing in size
- Lump/mass deep to the fascia
- Pain
- More common in older patients
- Benign masses may have one or more of these features
 www.nice.org.uk/CG027

Sarcomas

- Typically most sarcomas are large > 5 cm (unless they are superficial)
- Deep
- Heterogeneous
- Hypoechoic (with the exception of liposarcomas = uniformly echogenic)
- Contain areas of necrosis = cystic spaces

ad	O

Low-grade	 Slow growing cancer cells Similar to normal cells Less likely to spread, less aggressive 			
Intermediate-grade	Cancer cells growing slightly fasterAppear more abnormal			
High-grade	 Fast growing cells Appear very abnormal More aggressive and most likely to spread 			

Staging

Stage 1	Low grade< 5 cmNot spread
Stage 2	Any gradeSlightly larger than stage 1Not spread
Stage 3	High gradeNot spread
Stage 4	Any gradeAny sizeHas spread to other parts of the body

Sarcoma centres

- https://sarcoma.org.uk/health-professionals/sarcoma-specialist-centres
- https://sarcoma.org.uk

Contrast-enhanced Ultrasound

- A study by Loizides, A. *et al* (2012). Perfusion pattern of musculoskeletal masses using contrast-enhanced ultrasound: a helpful tool for characterisation? *European Radiology.* 22:pp 1803-1811
 - Hypothesised that malignant tumours had markedly central hypoperfusion (central necrosis) compared to benign tumours
 - Used CEUS to prove this theory and perhaps aid in tumour characterisation
 - Used three-feature combination of size >3.3 cm, mass location below the superficial fascia and the perfusion pattern
 - PPV of 86% and NPV of 88%

Future developments...

 Research perfusion pattern

Type	Perfusion Pattern	Benign	Malignant
P1		1.0	0.0
P2	0	0.4	0.6
Р3	3	0.2	0.8
P4		1.0	0.0

- Algorithm/App for soft tissue mass features
- Elastography
- 3D

Summary

- Clinical history of lump
- Evaluate mass in context age, sex, FH, medical history etc
- Define mass in terms of
 - ➤ location
 - > size
 - ➤ appearance
 - through transmission of sound
 - features determined by dynamic scanning
- Know your limitations Ultrasound cannot always determine the exact nature of soft tissue lesions
- Offer guidance about pathway observe, biopsy or excise

References

- www.sarcoma.org.uk
- NICE guidelines for soft tissue masses <u>www.nice.org.uk/CG027</u>
- Loizides, A. et al (2012). Perfusion pattern of musculoskeletal masses using contrastenhanced ultrasound: a helpful tool for characterisation? European Radiology. 22: pp 1803-1811
- McNally, E. Practical Musculoskeletal Ultrasound. 2005 Elsevier: Philadelphia
- Jacobson, J. 2013 *Fundamentals of Musculoskeletal Ultrasound*. 2nd ed. Elsevier/Saunders
- Allan, P., Baxter, G. and Weston, M. 2011. Clinical Ultrasound. 3rd ed. Churchill Livingstone:London
- Hoshi, M. et al (2017). Clinical features of soft tissue sarcoma presenting intra-tumour haematoma: case series and review of the literature. International Orthopaedics. 41: 203-209
- Noebauer-Humann et al, 2015. Soft tissue tumors in adults: ESSR-approved guidelines for diagnostic imaging
- Paunipagar et al, 2010. Ultrasound features of deep-seated lipomas. Insights Imaging. 1: pp 149-153
- Griffith, J Diagnostic Ultrasound Musculoskeletal. 2019 Elsevier: Philadelphia

